
1

LAKIREDDY BALI REDDY COLLEGE OF

ENGINEERING
(AUTONOMOUS)

L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

DEPARTMENT
OF

INFORMATION TECHNOLOGY

Operating System and Linux Internals Lab (20IT54)

B.TECH VI SEMESTER

R20

G.Rajendra

2

Cycle 1:

Aim: Learn some of the basic concepts in OS with the help of Linux commands. Commands: ps,

kill, killall, ls, ln, readlink, cp, rm, vi editor, grep, find, who, cat, who.

ps:

The ps command is used to view currently running processes on the system. It helps us to

determine which process is doing what in our system, how much memory it is using, how much

CPU space it occupies, user ID, command name, etc .

Syntax:

ps

output:

Options

Option Function

ps -ef / -aux List currently running process in full format

ps -ax List currently running process

ps -u <username> List process for specific user

ps -C <command> List process for given command

ps -p <PID> List process with given PID

ps -ppid <PPID> List process with given ppid

pstree Show process in hierarchy

ps -L List all threads for a particular process

ps --sort pmem Find memory leak

ps -eo Show security information

ps -U root -u root u Show process running by root

Kill:

On Linux, the "kill" command is used to send a signal to a process, which can be used to kill

the process. The signal can be specified as a signal number or as a signal name, and the default

signal is the TERM signal, which terminates the process. In this article, we'll explore the

different options and usage of the "kill" command, including how to use it to kill specific

processes and how to use it in combination with other commands.

Syntax:

$ kill [signal] pid

Example:

To stop a process with the PID of 1234, you would enter the following command −

$ kill -STOP 1234

To continue the process, you would use the following command −

$ kill -CONT 1234

Killall:

The killall command cancels all processes that you started, except those producing

the killall process. This command provides a convenient means of canceling all processes

created by the shell that you control. When started by a root user, the killall command cancels all

cancellable processes except those processes that started it. If several Signals are specified, only

the last one is effective.

If no signal is specified, the killall command sends a SIGKILL signal.

Syntax

killall [-] [-Signal]

Examples

https://www.javatpoint.com/linux-ps#linux-ps-ef-aux
https://www.javatpoint.com/linux-ps#linux-ps-ax
https://www.javatpoint.com/linux-ps#linux-ps-u-username
https://www.javatpoint.com/linux-ps#linux-ps-c-command
https://www.javatpoint.com/linux-ps#linux-ps-p-pid
https://www.javatpoint.com/linux-ps#linux-ps-p-ppid
https://www.javatpoint.com/linux-listing-process-in-hierarchy
https://www.javatpoint.com/linux-listing-all-threads-for-specific-process
https://www.javatpoint.com/linux-finding-memory-leak
https://www.javatpoint.com/linux-listing-different-information
https://www.javatpoint.com/linux-show-root-runing-process
https://www.ibm.com/docs/en/aix/7.2?topic=k-killall-command#killall__row-d3e34763
https://www.ibm.com/docs/en/aix/7.2?topic=k-killall-command#killall__row-d3e34793

3

1. To stop all background processes that have started, enter:

killall

This sends all background processes the kill signal 9 (also called the SIGKILL signal).

2. To stop all background processes, giving them a chance to clean up, enter:

killall -

This sends signal 15, the SIGTERM signal; waits 30 seconds, and then sends signal 9,

the SIGKILL signal.

3. To send a specific signal to the background processes, enter:

killall -2

This sends signal 2, the SIGINT signal, to the background processes.

ls:

The ls is the list command in Linux. It will show the full list or content of your directory. Just

type ls and press the enter key. The whole content will be shown.

ls is a command used to list computer directories and files in Unix-like and Unix operating systems.

It is developed by the Single Unix Specification and POSIX.

Syntax:

ls

output:

ls command options

ls option Description

ls -a In Linux, hidden files start with . (dot) symbol and they are not visible in the

regular directory. The (ls -a) command will enlist the whole list of the current

directory including the hidden files.

ls -l It will show the list in a long list format.

ls -lh This command will show you the file sizes in human readable format. Size

of the file is very difficult to read when displayed in terms of byte. The (ls -

lh)command will give you the data in terms of Mb, Gb, Tb, etc.

ls -lhS If you want to display your files in descending order (highest at the top)

according to their size, then you can use (ls -lhS) command.

ls -l - -block-

size=[SIZE]

It is used to display the files in a specific size format. Here, in [SIZE] you

can assign size according to your requirement.

ls -d */ It is used to display only subdirectories.

ls -g or ls -lG With this you can exclude column of group information and owner.

ls -n It is used to print group ID and owner ID instead of their names.

ls --

color=[VALUE]

This command is used to print list as colored or discolored.

ls -li This command prints the index number if file is in the first column.

ls -p It is used to identify the directory easily by marking the directories with a

slash (/) line sign.

ls -r It is used to print the list in reverse order.

ls -R It will display the content of the sub-directories also.

ls -lX It will group the files with same extensions together in the list.

ls -lt It will sort the list by displaying recently modified filed at top.

ls ~ It gives the contents of home directory.

ls ../ It give the contents of parent directory.

ls --version It checks the version of ls command.

https://www.javatpoint.com/linux-ls#linux-ls-a
https://www.javatpoint.com/linux-ls#linux-ls-l
https://www.javatpoint.com/linux-ls#linux-ls-l-block-size
https://www.javatpoint.com/linux-ls#linux-ls-l-block-size
https://www.javatpoint.com/linux-ls#linux-ls-d-asterisk-slash
https://www.javatpoint.com/linux-ls#linux-ls-g
https://www.javatpoint.com/linux-ls#linux-ls-color
https://www.javatpoint.com/linux-ls#linux-ls-color
https://www.javatpoint.com/linux-ls#linux-ls-tilde
https://www.javatpoint.com/linux-ls#linux-ls-dot-dot-slash

4

ln:

ln - make links between files

In the 1st form, create a link to TARGET with the name LINK_NAME. In the 2nd form, create a

link to TARGET in the current directory. In the 3rd and 4th forms, create links to each TARGET

in DIRECTORY. Create hard links by default, symbolic links with --symbolic. When creating

hard links, each TARGET must exist.

options :

Tag Description

--backup[=CONTROL]

 make a backup of each existing destination file

-b like --backup but does not accept an argument

-d, -F, --directory

 allow the superuser to attempt to hard link directories (note: will

probably fail due to system restrictions, even for the superuser)

-f, --force

 remove existing destination files

-n, --no-dereference

 treat destination that is a symlink to a directory as if it were a normal

file

-i, --interactive

 prompt whether to remove destinations

-s, --symbolic

 make symbolic links instead of hard links

-S, --suffix=SUFFIX

 override the usual backup suffix

-t, --target-directory=DIRECTORY

 specify the DIRECTORY in which to create the links

-T, --no-target-directory

 treat LINK_NAME as a normal file

-v, --verbose

 print name of each file before linking

--help display this help and exit

--version

 output version information and exit

The backup suffix is ‘~’, unless set with --suffix or SIMPLE_BACKUP_SUFFIX. The version

control method may be selected via the --backup option or through the

VERSION_CONTROL environment variable. Here are the values:

none, off

 never make backups (even if --backup is given)

numbered, t

 make numbered backups

existing, nil

 numbered if numbered backups exist, simple otherwise

simple, never

 always make simple backups

Readlink:

readlink command in Linux is used to print resolved symbolic links or canonical file names.

In simple words whenever we have a symbolic link and we want to know what path it

represents. Then, in that case, the readlink command comes into play to show the actual path

of the symbolic link.

5

Syntax:

readlink [OPTION]... FILE...

Example: It will print the print resolved symbolic links or canonical file names of the

symbolic link passed with the command as shown below.

cp:

cp command copies files (or, optionally, directories). The copy is completely independent of the

original. You can either copy one file to another, or copy arbitrarily many files to a destination

directory.

In the first format, when two file names are given, cp command copies SOURCE file to DEST

file.

In the second format copy multiple SOURCE(s) to a DIRECTORY.

Options

-a, --archive

 same as -dR --preserve=all

--attributes-only

 don't copy the file data, just the attributes

--backup[=CONTROL]

 make a backup of each existing destination file

-b like --backup but does not accept an argument

--copy-contents

 copy contents of special files when recursive

-d same as --no-dereference --preserve=links

-f, --force

 if an existing destination file cannot be opened, remove it and try again (this option is

ignored when the -n option is also used)

-i, --interactive

 prompt before overwrite (overrides a previous -n option)

-H follow command-line symbolic links in SOURCE

-l, --link

 hard link files instead of copying

-L, --dereference

 always follow symbolic links in SOURCE

-n, --no-clobber

 do not overwrite an existing file (overrides a previous -i option)

-P, --no-dereference

 never follow symbolic links in SOURCE

6

-p same as --preserve=mode,ownership,timestamps

--preserve[=ATTR_LIST]

 preserve the specified attributes (default: mode,ownership,timestamps), if possible additional

attributes: context, links, xattr, all

--no-preserve=ATTR_LIST

 don't preserve the specified attributes

--parents

 use full source file name under DIRECTORY

-R, -r, --recursive

 copy directories recursively

--reflink[=WHEN]

 control clone/CoW copies. See below

--remove-destination

 remove each existing destination file before attempting to open it (contrast with --force)

--sparse=WHEN

 control creation of sparse files. See below

--strip-trailing-slashes

 remove any trailing slashes from each SOURCE argument

-s, --symbolic-link

 make symbolic links instead of copying

-S, --suffix=SUFFIX

 override the usual backup suffix

-t, --target-directory=DIRECTORY

 copy all SOURCE arguments into DIRECTORY

-T, --no-target-directory

 treat DEST as a normal file

-u, --update

 copy only when the SOURCE file is newer than the destination file or when the destination file

is missing

-v, --verbose

 explain what is being done

-x, --one-file-system

 stay on this file system

-Z set SELinux security context of destination file to default type

--context[=CTX]

 like -Z, or if CTX is specified then set the SELinux or SMACK security context to CTX

7

--help display this help and exit

--version

 output version information and exit

rm:

The 'rm' means remove. This command is used to remove a file. The command line doesn't have

a recycle bin or trash unlike other GUI's to recover the files. Hence, be very much careful while

using this command. Once you have deleted a file, it is removed permanently.

Syntax:

rm <filename>

Example:

rm myfile1

Options:

Option Description

rm *extension Used to delete files having same extension.

rm -r or R To delete a directory recursively.

rm -i Remove a file interactively.

rm -rf Remove a directory forcefully.

vi editor:

The vi editor is elaborated as visual editor. It is installed in every Unix system. In other words, it

is available in all Linux distros. It is user-friendly and works same on different distros and

platforms. It is a very powerful application. An improved version of vi editor is vim.

The vi editor has two modes:

o Command Mode: In command mode, actions are taken on the file. The vi editor starts in

command mode. Here, the typed words will act as commands in vi editor. To pass a

command, you need to be in command mode.

o Insert Mode: In insert mode, entered text will be inserted into the file. The Esc key will

take you to the command mode from insert mode.

Using vi

The vi editor tool is an interactive tool as it displays changes made in the file on the screen while

you edit the file.

In vi editor you can insert, edit or remove a word as cursor moves throughout the file.

Commands are specified for each function like to delete it's x or dd.

syntax:

vi <fileName>

Command mode

This is what you'll see when you'll press enter after the above command. If you'll start typing,

nothing will appear as you are in command mode. By default vi opens in command mode.

https://www.javatpoint.com/linux-rm-extension
https://www.javatpoint.com/linux-rm-r
https://www.javatpoint.com/linux-rm-i
https://www.javatpoint.com/linux-rm-rf

8

Insert mode

To move to the insert mode press i. Although, there are other commands also to move to

insert mode which we'll study in next page.

To save and quit

You can save and quit vi editor from command mode. Before writing save or quit command

you have to press colon (:). Colon allows you to give instructions to vi.

exit vi table:

Commands Action

:wq Save and quit

:w Save

:q Quit

:w fname Save as fname

ZZ Save and quit

:q! Quit discarding changes made

:w! Save (and write to non-writable file)

grep:

The 'grep' command stands for "global regular expression print". grep command filters the

content of a file which makes our search easy. It is a command-line utility to search plain-text data

groups for lines that are the same as a regular expression. The name "grep" comes from the

command, i.e., ed, which contains the same effect. Originally, grep was designed for the Unix

operating system, but it became available for every Unix-like system later and a few others like

OS 9.

Syntax:

command | grep <searchWord>

Example:

cat marks.txt | grep 9

output:

grep without pipe

It can be used without pipe also.

Syntax:

grep <searchWord> <file name>

Example:

grep 9 marks.txt

9

Find:

The find command helps us to find a particular file within a directory. It is used to find the list of

files for the various conditions like permission, user ownership, modification, date/time, size,

and more.

find <location> <comparison-criteria> <search-term>

example:

find . -name "*.txt"

output:

who:

The Linux "who" command lets you display the users currently logged in to your UNIX or Linux

operating system.

Syntax

who

To display all details of currently logged in users-

With this command's help, one sees all the details of every user logged in to the current system.

The syntax of this command is the same except the additional option "-a", as we can see in the

given syntax:

Syntax

who -a

Output

cat:

The 'cat' command is the most universal and powerful tool. It is considered to be one of the most

frequently used commands. It can be used to display the content of a file, copy content from one

file to another, concatenate the contents of multiple files, display the line number, display $ at

the end of the line, etc.

Options in the cat Command

o --show-all, -A: It is the same as -vET.

o --number-nonblank, -b: It shows the total non-empty output lines. Also, it overrides -n.

o -e: It is the same as -vE.

o --show-ends, -E: It shows the $ symbol at the completion of all lines.

10

o --number, -n: It gives the total of every output line.

o --squeeze-blank, -s: It suppresses redundant empty output lines.

o -t: It is the same as -vT.

o --show-tabs, -T: It shows TAB characters as ^|.

o -u: ignored.

o --help: It shows the help menu and exit.

cat <fileName>

Example:

cat jtp.txt

Linux cat command usage

Option Function

cat > [fileName] To create a file.

cat [oldfile] > [newfile] To copy content from older to new file.

cat [file1 file2 and so on] > [new file name] To concatenate contents of multiple files into one.

cat -n/cat -b [fileName] To display line numbers.

cat -e [fileName] To display $ character at the end of each line.

cat [fileName] <<EOF Used as page end marker.

https://www.javatpoint.com/linux-cat#linux-cat-create
https://www.javatpoint.com/linux-cat#linux-cat-copy
https://www.javatpoint.com/linux-cat#linux-cat-concatenate
https://www.javatpoint.com/linux-cat#linux-cat-display-line-numbers
https://www.javatpoint.com/linux-cat#linux-cat-e
https://www.javatpoint.com/linux-cat#linux-cat-end-marker

11

Cycle 2:

Aim: Introduce system calls in the Linux OS with the help of some basic system calls such as

fork, exec, sleep, wait, etc.

(a) fork() system call

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<sys/types.h>

int main(int argc, char **argv) {

 pid_t pid = fork();

 if (pid==0) {

 printf("This is the Child process and pid is: %d\n",getpid());

 exit(0);

 } else if (pid > 0) {

 printf("This is the Parent process and pid is: %d\n",getpid());

 } else {

 printf("Error while forking\n");

 exit(EXIT_FAILURE);

 }

 return 0;

}

Compilation: gcc fork.c

Output:

$./a.out

This is the Parent process and pid is: 69032

This is the Child process and pid is: 69033

(B)(i) C program to demonstrate working of wait()

#include<stdio.h>

#include<stdlib.h>

#include<sys/wait.h>

#include<unistd.h>

 int main()

{

 pid_t cpid;

 if (fork()== 0)

 exit(0); /* terminate child */

 else

 cpid = wait(NULL); /* reaping parent */

 printf("Parent pid = %d\n", getpid());

 printf("Child pid = %d\n", cpid);

 return 0;

}

Output:

Parent pid = 12345678

Child pid = 89546848

12

(B)(ii) C program to demonstrate working of wait()

#include<stdio.h>

#include<sys/wait.h>

#include<unistd.h>

 int main()

{

 if (fork()== 0)

 printf("HC: hello from child\n");

 else

 {

 printf("HP: hello from parent\n");

 wait(NULL);

 printf("CT: child has terminated\n");

 }

 printf("Bye\n");

 return 0;

}

Output: depend on environment

HC: hello from child

HP: hello from parent

CT: child has terminated

 (or)

HP: hello from parent

HC: hello from child

CT: child has terminated

13

(C) Write a C program that illustrates the creation of child process using fork system call. One

process finds sum of even series and other process finds sum of odd series.

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int main(){

int i,n,sum=0;

pid_t pid;

system(“clear”);

printf(“Enter n value:”);

scanf(“%d”,&n)

pid=fork();

if(pid==0)

{

printf(“From child process\n”);

for(i=1;i<n;i+=2)

{

printf(“%d\”,i);

sum+=i;

}

printf(“Odd sum:%d\n”,sum);

}

else

{

printf(“From process\n”);

for(i=0;i<n;i+=2)

{

printf(“%d\”,i);

sum+=i;

}

printf(“Even sum:%d\n”,sum);

}}

Output:

Enter n value:10

From Parent process

0 2 4 6 8 Even sum=20

From child process

1 3 5 7 9 Odd sum=25

14

(D) exec() family of functions:

These functions are used to execute a file, and they replace the current process image with a new

process image once they are called.

execl() receives the location of the executable file as its first argument. The next arguments will

be available to the file when it’s executed. The last argument has to be NULL:

int execl(const char *pathname, const char *arg, ..., NULL)

Let’s look at an example. We need to make sure to include unistd.h:

#include <unistd.h>

 int main(void) {

 char *file = "/usr/bin/echo";

 char *arg1 = "Hello world!";

 execl(file, file, arg1, NULL);

 return 0;

}

The command we are running is echo which is located at /usr/bin/echo. By convention, the first

argument available to a program needs to be the program itself.

Output:

$ gcc execl.c

$./a.out

Hello world!

echo has successfully printed the output on the screen.

execlp()

execlp() is very similar to execl(). However, execlp() uses the PATH environment variable to

look for the file. Therefore, the path to the executable file is not needed:

int execlp(const char *file, const char *arg, ..., NULL)Copy

Let’s see an example:

#include <unistd.h>

int main(void) {

 char *file = "echo";

 char *arg1 = "Hello world!";

 execlp(file, file, arg1, NULL);

 return 0;

}

Output:

$ gcc execlp.c

$./a.out

Hello world!

Since echo is already located in the PATH environment variable, we didn’t have to specify its

location.

https://man7.org/linux/man-pages/man3/exec.3.html

15

sleep() system call (Zombie Process):

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

 // Fork returns process id

 // in parent process

 pid_t pid = fork();

 // Parent process

 if (pid > 0)

 sleep(50);

 // Child process

 else

 exit(0);

 return 0;

 }

Output:

gcc zombie.c

./a.out

Process id=11577

Process id=11578

Develop C program to demonstrate Orphan Process

In the following code, parent finishes execution and exits while the child process is still

executing and is called an orphan process now.

However, the orphan process is soon adopted by init process, once its parent process dies.

#include<stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

 // Create a child process

 int pid = fork();

 if (pid > 0)

 printf("in parent process");

 // Note that pid is 0 in child process

 // and negative if fork() fails

 else if (pid == 0)

 {

 sleep(30);

 printf("in child process");

 }

 return 0;

}

Output:

gcc orphan.c

./a.out

in parent process

in child process

16

Cycle 3:

(a) Write a shell script that accepts a file name, starting and ending line numbers as arguments

and displays all the lines between the given line numbers.

//Program

read fname

echo "enter the starting line number"

read s

echo "enter the ending line number"

read n

sed -n $s,$n\p $fname | cat > newline

cat newline

Output:

cat sample

Hello

2nd Year Students

Welcome

to

Os Lab

Good Bye

$ chmod +x cycle3.sh

$./cycle3.sh

enter the filename

sample

enter the starting line number

1

enter the ending line number

3

Hello

2nd Year Students

Welcome

(b) Write a shell script to perform arithmetic operations of two numbers.

#!/bin/sh

take two numbers from user

echo "Enter a value: "

read a

echo "Enter b value: "

read b

val=`expr $a + $b`

echo "a + b : $val"

val=`expr $a - $b`

echo "a - b : $val"

val=`expr $a * $b`

echo "a * b : $val"

val=`expr $b / $a`

echo "b / a : $val"

val=`expr $b % $a`

echo "b % a : $val"

if [$a == $b]

then

 echo "a is equal to b"

fi

17

if [$a != $b]

then

 echo "a is not equal to b"

fi

Output:

Enter a value:

10

Enter b value:

5

a+b”15

a-b:5

a*b:50

b/a:0

b%a:5

a is not equal to b

(c) Write a shell script which counts the number of lines and words present in

 a given file.

#!/bin/sh

#shell script to count the no of lines, words and characters in the given file

echo “Enter a file name:”

read fn

echo “Number of Lines:”

wc –l $fn

echo “Number of Words:”

wc –w $fn

echo “Number of Characters:”

wc –c $fn

Output:

Enter a file name:

Samp1

Number of Lines:

3 Samp1

Number of Words:

8 Samp1

Number of Characters:

56 Samp1

http://unixquestionbank.blogspot.com/2012/11/write-shell-script-which-counts-number.html
http://unixquestionbank.blogspot.com/2012/11/write-shell-script-which-counts-number.html

18

Cycle-4

(a) Write a shell script that displays the list of all files in the given directory.

echo “Menu”

echo “1.Short format display \n”

echo “2.Long format display \n”

echo “3.Hidden files to display \n”

echo “Enter your choice:”

read ch

case $ch in

1) ls $a

;;

2)ls –l $a

;;

3)ls –la $a

;;

*) echo “Choice is not correct”

;;

esac

Output:

19

 (b) Write a shell script to generate Fibonacci series.

#! /bin/sh

#shell script to generate Fibonacci series

clear

echo “How many no of terms to be generated?”

read n

x=0

y=1

i=2

echo “Fibonacci series up to $n terms:”

echo “$x”

echo “$y”

while [$i –lt $n]

do

 i=`expr $i +1`

 z=`expr $x + $y`

 echo “$z”

 x=$y

 y=$z

done

Output:

How many no of terms to be generated?

5

Fibonacci series up to 5 terms:

0

1

1

2

3

20

(c) Write a shell script to print prime numbers in a given range.

#!/bin/bash

prime_1=0

echo "enter the range"

read n

echo " Prime number between 1 to $n is:"

echo "1"

echo "2"

for((i=3;i<=n;))

do

for((j=i-1;j>=2;))

do

if [`expr $i % $j` -ne 0]

then

prime_1=1

else

prime_1=0

break

fi

j=`expr $j - 1`

done

if [$prime_1 -eq 1]

 then

echo $i

fi

i=`expr $i + 1`

done

Output:

enter the range

10

Prime number between 1 to 10 is:

1

2

3

5

7

21

Cycle 5:

(a) Write a shell script that deletes all lines containing a specified word in one or more files

supplied as arguments to it.

echo enter file name

read file

echo enter word

read word

echo file before removing $word:

cat $file

grep -v -i $word $file > test

mv test $file

echo file after removing $word:

cat $file

Output:

cilab@ubuntu:~$ chmod +x cyc4.sh

cilab@ubuntu:~$./cyc4.sh

enter file name : sample

enter word

Hello

file before removing Hello:

Hello

2nd Year Students

to

Os Lab

Good Bye

file after removing Hello:

2nd Year Students

to

Os Lab

Good Bye

(b) Write a shell script to check whether the given number is palindrome or not.

echo “Enter a number:”

read n

num=$n

rev=0

while [$n –gt 0]

do

a=`expr $n % 10`

n=`expr $n / 10`

rev=’expr $rev * 10 + $a`

done

echo $rev

if [sum –eq $rev]

then

echo “Number is Palindrome”

else

echo “Number is not Palindrome”

fi

Output:

Enter a number:

121

121

Number is Palindrome

22

Cycle: 6

(a). Write a C program to illustrate the mkdir(), opendir(), readdir(), closedir()

 and rmdir() system calls.

#include<stdio.h>

#include<fcntl.h>

#include<dirent.h>

main()

{

char d[10];

int c,op;

DIR *e;

struct dirent *sd;

printf("**menu**\n1.create dir\n2.remove dir\n 3.read dir\n enter ur choice");

scanf("%d",&op);

switch(op)

{

case 1:

printf("enter dir name\n");

scanf("%s",&d);

c=mkdir(d,777);

if(c==1)

printf("dir is not created");

else

printf("dir is created");

break;

case 2: printf("enter dir name\n");

scanf("%s",&d);

c=rmdir(d);

if(c==1)

printf("dir is not removed");

else

printf("dir is removed");

break;

case 3:

 printf("enter dir name to open");

scanf("%s",&d);

e=opendir(d);

if(e==NULL)

printf("dir does not exist");

else

{

printf("dir exist\n");

while((sd=readdir(e))!=NULL)

printf("%s\t",sd->d_name);

}

closedir(e);

break;

}

}

23

Output:

menu

1.create dir

2.remove dir

3.read dir

enter ur choice1

enter dir name

root5

dir is created

menu

1.create dir

2.remove dir

3.read dir

enter ur choice2

enter dir name

root4

dir is removed

menu

1.create dir

2.remove dir

3.read dir

enter ur choice3

enter dir name to open

root1

dir exist:

 sample test.sh

menu

1.create dir

2.remove dir

3.read dir

enter ur choice4

24

(b) Write a shell script to demonstrate the usage getwd() System call.

#include <unistd.h>

#include <stdio.h>

#include <limits.h>

int main() {

 char cwd[PATH_MAX];

 if (getcwd(cwd, sizeof(cwd)) != NULL) {

 printf("Current working dir: %s\n", cwd);

 } else {

 perror("getcwd() error");

 return 1;

 }

 return 0;

}

Output:

gcc getwd.c

./a.out

Current working dir:/home/cilab

25

Cycle-7:

Write a program to simulate the following CPU scheduling algorithms to find turnaround time

and waiting time. i)Round Robin ii) FCFS

Round Robin Scheduling

 #include<stdio.h>

 void main()

 {

 int i, NOP, sum=0,count=0, y, quant, wt=0, tat=0, at[10], bt[10], temp[10];

 float avg_wt, avg_tat;

 printf(" Total number of process in the system: ");

 scanf("%d", &NOP);

 y = NOP;

 for(i=0; i<NOP; i++)

 {

 printf("\n Enter the Arrival and Burst time of the Process[%d]\n", i+1);

 printf(" Arrival time is: \t");

 scanf("%d", &at[i]);

 printf(" \nBurst time is: \t");

 scanf("%d", &bt[i]);

 temp[i] = bt[i];

 }

 printf("Enter the Time Quantum for the process: \t");

 scanf("%d", &quant);

 printf("\n Process No \t\t Burst Time \t\t TAT \t\t Waiting Time ");

 for(sum=0, i = 0; y!=0;)

 {

 if(temp[i] <= quant && temp[i] > 0)

 {

 sum = sum + temp[i];

 temp[i] = 0;

 count=1;

 }

 else if(temp[i] > 0) {

 temp[i] = temp[i] - quant;

 sum = sum + quant;

 }

 if(temp[i]==0 && count==1)

 {

 y--;

 printf("\nProcess No[%d] \t\t %d\t\t\t\t %d\t\t\t %d", i+1, bt[i], sum-at[i], sum-at[i]-bt[i]);

 wt = wt+sum-at[i]-bt[i];

 tat = tat+sum-at[i];

 count =0;

 }

 if(i==NOP-1)

 {

 i=0;

 }

 else if(at[i+1]<=sum)

 {

 i++;

26

}

 else

 {

 i=0;

 }

 }

 avg_wt = wt * 1.0/NOP;

 avg_tat = tat * 1.0/NOP;

 printf("\n Average Turn Around Time: \t%f", avg_wt);

 printf("\n Average Waiting Time: \t%f", avg_tat);

 }

Output:

Total number of process in the system: 6

 Enter the Arrival and Burst time of the Process[1]

 Arrival time is: 0

Burst time is: 8

 Enter the Arrival and Burst time of the Process[2]

 Arrival time is: 1

Burst time is: 4

 Enter the Arrival and Burst time of the Process[3]

 Arrival time is: 2

Burst time is: 2

 Enter the Arrival and Burst time of the Process[4]

 Arrival time is: 3

Burst time is: 1

 Enter the Arrival and Burst time of the Process[5]

 Arrival time is: 4

Burst time is: 3

 Enter the Arrival and Burst time of the Process[6]

 Arrival time is: 5

 Burst time is: 2

Enter the Time Quantum for the process: 2

 Process No Burst Time TAT Waiting Time

Process No[3] 2 4 2

Process No[4] 1 4 3

Process No[6] 2 6 4

Process No[2] 4 14 10

Process No[5] 3 12 9

Process No[1] 8 20 12

 Average Turn Around Time: 6.666667

 Average Waiting Time: 10.000000

27

First Come First Serve Scheduling

#include<stdio.h>

 main()

{

int bt[20], wt[20], tat[20], i, n;

float wtavg, tatavg;

printf("\nEnter the number of processes:");

scanf("%d", &n);

for(i=0;i<n;i++)

{

printf("\nEnter Burst Time for Process %d:", i);

scanf("%d", &bt[i]);

}

wt[0] = wtavg = 0;

tat[0] = tatavg = bt[0];

for(i=1;i<n;i++)

{

wt[i] = wt[i-1] +bt[i-1];

tat[i] = tat[i-1] +bt[i];

wtavg = wtavg + wt[i];

tatavg = tatavg + tat[i];

}

printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");

for(i=0;i<n;i++)

printf("\n\t P%d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);

printf("\nAverage Waiting Time -- %f", wtavg/n);

printf("\nAverage Turnaround Time -- %f", tatavg/n);

}

Output:

Enter the number of processes:4

Enter Burst Time for Process 0:3

Enter Burst Time for Process 1:7

Enter Burst Time for Process 2:10

Enter Burst Time for Process 3:1

 PROCESS BURST TIME WAITING TIME TURNAROUND TIME

 P0 3 0 3

 P1 7 3 10

 P2 10 10 20

 P3 1 20 21

Average Waiting Time -- 8.250000

Average Turnaround Time -- 13.500000

28

Cycle-8:

(a) Write a C Program to write and read two messages using pipe.

Algorithm

Step 1 − Create a pipe.

Step 2 − Send a message to the pipe.

Step 3 − Retrieve the message from the pipe and write it to the standard output.

Step 4 − Send another message to the pipe.

Step 5 − Retrieve the message from the pipe and write it to the standard output.

Note − Retrieving messages can also be done after sending all messages.

Source Code:

#include<stdio.h>

#include<unistd.h>

int main() {

 int pipefds[2];

 int returnstatus;

 char writemessages[2][20]={"Hi", "Hello"};

 char readmessage[20];

 returnstatus = pipe(pipefds);

 if (returnstatus == -1)

{

 printf("Unable to create pipe\n");

 return 1;

 }

 printf("Writing to pipe - Message 1 is %s\n", writemessages[0]);

 write(pipefds[1], writemessages[0], sizeof(writemessages[0]));

 read(pipefds[0], readmessage, sizeof(readmessage));

 printf("Reading from pipe – Message 1 is %s\n", readmessage);

 printf("Writing to pipe - Message 2 is %s\n", writemessages[0]);

 write(pipefds[1], writemessages[1], sizeof(writemessages[0]));

 read(pipefds[0], readmessage, sizeof(readmessage));

 printf("Reading from pipe – Message 2 is %s\n", readmessage);

 return 0;

}

Output:

Compilation

gcc -o simplepipe simplepipe.c

Execution/Output

Writing to pipe - Message 1 is Hi

Reading from pipe – Message 1 is Hi

Writing to pipe - Message 2 is Hello

Reading from pipe – Message 2 is Hello

29

(b) Write C Program to write and read two messages through the pipe using the

 parent and the child processes.

Algorithm

Step 1 − Create a pipe.

Step 2 − Create a child process.

Step 3 − Parent process writes to the pipe.

Step 4 − Child process retrieves the message from the pipe and writes it to the standard output.

Step 5 − Repeat step 3 and step 4 once again.

Source Code:

#include<stdio.h>

#include<unistd.h>

int main()

{

 int pipefds[2];

 int returnstatus;

 int pid;

 char writemessages[2][20]={"Hi", "Hello"};

 char readmessage[20];

 returnstatus = pipe(pipefds);

 if (returnstatus == -1) {

 printf("Unable to create pipe\n");

 return 1;

 }

 pid = fork();

 // Child process

 if (pid == 0)

{

 read(pipefds[0], readmessage, sizeof(readmessage));

 printf("Child Process - Reading from pipe – Message 1 is %s\n", readmessage);

 read(pipefds[0], readmessage, sizeof(readmessage));

 printf("Child Process - Reading from pipe – Message 2 is %s\n", readmessage);

 }

else

{ //Parent process

 printf("Parent Process - Writing to pipe - Message 1 is %s\n", writemessages[0]);

 write(pipefds[1], writemessages[0], sizeof(writemessages[0]));

 printf("Parent Process - Writing to pipe - Message 2 is %s\n", writemessages[1]);

 write(pipefds[1], writemessages[1], sizeof(writemessages[1]));

 }

 return 0;

}

Output:

Compilation

gcc pipewithprocesses.c –o pipewithprocesses

Execution

Parent Process - Writing to pipe - Message 1 is Hi

Parent Process - Writing to pipe - Message 2 is Hello

Child Process - Reading from pipe – Message 1 is Hi

Child Process - Reading from pipe – Message 2 is Hello

30

Cycle-9:

(a) Write a C program for achieving two-way communication using pipes.

Algorithm

Step 1 − Create pipe1 for the parent process to write and the child process to read.

Step 2 − Create pipe2 for the child process to write and the parent process to read.

Step 3 − Close the unwanted ends of the pipe from the parent and child side.

Step 4 − Parent process to write a message and child process to read and display on the screen.

Step 5 − Child process to write a message and parent process to read and display on the screen.

Source Code:

#include<stdio.h>

#include<unistd.h>

int main() {

 int pipefds1[2], pipefds2[2];

 int returnstatus1, returnstatus2;

 int pid;

 char pipe1writemessage[20] = "Hi";

 char pipe2writemessage[20] = "Hello";

 char readmessage[20];

 returnstatus1 = pipe(pipefds1);

 if (returnstatus1 == -1) {

 printf("Unable to create pipe 1 \n");

 return 1;

 }

 returnstatus2 = pipe(pipefds2);

 if (returnstatus2 == -1) {

 printf("Unable to create pipe 2 \n");

 return 1;

 }

 pid = fork();

 if (pid != 0) // Parent process {

 close(pipefds1[0]); // Close the unwanted pipe1 read side

 close(pipefds2[1]); // Close the unwanted pipe2 write side

31

 printf("In Parent: Writing to pipe 1 – Message is %s\n", pipe1writemessage);

 write(pipefds1[1], pipe1writemessage, sizeof(pipe1writemessage));

 read(pipefds2[0], readmessage, sizeof(readmessage));

 printf("In Parent: Reading from pipe 2 – Message is %s\n", readmessage);

 } else { //child process

 close(pipefds1[1]); // Close the unwanted pipe1 write side

 close(pipefds2[0]); // Close the unwanted pipe2 read side

 read(pipefds1[0], readmessage, sizeof(readmessage));

 printf("In Child: Reading from pipe 1 – Message is %s\n", readmessage);

 printf("In Child: Writing to pipe 2 – Message is %s\n", pipe2writemessage);

 write(pipefds2[1], pipe2writemessage, sizeof(pipe2writemessage));

 }

 return 0;

}

Output:

Compilation

gcc twowayspipe.c –o twowayspipe

Execution

In Parent: Writing to pipe 1 – Message is Hi

In Child: Reading from pipe 1 – Message is Hi

In Child: Writing to pipe 2 – Message is Hello

In Parent: Reading from pipe 2 – Message is Hello

32

Cycle-10

1. Demonstrate with an example the usage of two types of links

A link in UNIX is a pointer to a file. Like pointers in any programming languages, links in UNIX

are pointers pointing to a file or a directory. Creating links is a kind of shortcuts to access a file.

Links allow more than one file name to refer to the same file, elsewhere.

There are two types of links:

1. Soft Link or Symbolic links

2. Hard Links

These links behave differently when the source of the link (what is being linked to) is moved or

removed. Symbolic links are not updated (they merely contain a string which is the pathname of

its target); hard links always refer to the source, even if moved or removed.

For example, if we have a file a.txt. If we create a hard link to the file and then delete the file, we

can still access the file using hard link. But if we create a soft link of the file and then delete the

file, we can’t access the file through soft link and soft link becomes dangling. Basically hard link

increases reference count of a location while soft links work as a shortcut (like in Windows)

1. Hard Links

Each hard linked file is assigned the same Inode value as the original, therefore they reference

the same physical file location. Hard links more flexible and remain linked even if the original or

linked files are moved throughout the file system, although hard links are unable to cross

different file systems.

❖ ls -l command shows all the links with the link column shows number of links.

❖ Links have actual file contents

❖ Removing any link, just reduces the link count, but doesn’t affect other links.

❖ We cannot create a hard link for a directory to avoid recursive loops.

❖ If original file is removed then the link will still show the content of the file.

❖ Command to create a hard link is:

$ ln [original filename] [link name]

2. Soft Links

A soft link is similar to the file shortcut feature which is used in Windows Operating systems.

Each soft linked file contains a separate Inode value that points to the original file. As similar to

hard links, any changes to the data in either file is reflected in the other. Soft links can be linked

across different file systems, although if the original file is deleted or moved, the soft linked file

will not work correctly (called hanging link).

❖ ls -l command shows all links with first column value l? and the link points to original

file.

❖ Soft Link contains the path for original file and not the contents.

❖ Removing soft link doesn’t affect anything but removing original file, the link becomes

“dangling” link which points to nonexistent file.

❖ A soft link can link to a directory.

❖ Link across filesystems: If you want to link files across the filesystems, you can only use

symlinks/soft links.

❖ Command to create a Soft link is:

❖ $ ln -s [original filename] [link name]

A symbolic or soft link is an actual link to the original file, whereas a hard link is a mirror copy

of the original file. If you delete the original file, the soft link has no value, because it points to a

33

non-existent file. But in the case of hard link, it is entirely opposite. If you delete the original file,

the hard link can still has the data of the original file. Because hard link acts as a mirror copy of

the original file.

In a nutshell, a soft link

▪ can cross the file system,

▪ allows you to link between directories,

▪ has different inodes number and file permissions than original file,

▪ permissions will not be updated,

▪ has only the path of the original file, not the contents.

A hard Link

▪ can’t cross the file system boundaries,

▪ can’t link directories,

▪ has the same inodes number and permissions of original file,

▪ permissions will be updated if we change the permissions of source file,

▪ has the actual contents of original file, so that you still can view the contents, even if the

original file moved or removed.

Still don’t get it? Well, allow me to show you some practical examples.

Creating Soft, or Symbolic Link

Let us create an empty directory called “test”.

$ mkdir test

Change to the “test” directory:

$ cd test

Now, create a new file called source.file with some data as shown below.

$ echo "Welcome to OSTechNix" >source.file

Let us view the data of the source.file.

$ cat source.file

Welcome to OSTechNix

Well, the source.file has been created.

Now, create the a symbolic or soft link to the source.file.

To do so, run:

$ ln -s source.file softlink.file

Let us view the data of softlink.file.

$ cat softlink.file

34

As you see in the above output, softlink.file displays the same data as source.file.

Let us check the inodes and permissions of softlink.file and source.file.

$ ls -lia

Sample output:

total 12

15745326 drwxr-xr-x 2 sk users 4096 Dec 13 14:55 .

15728642 drwx------ 49 sk users 4096 Dec 13 14:50 ..

15746561 lrwxrwxrwx 1 sk users 11 Dec 13 14:55 softlink.file -> source.file

15746185 -rw-r--r-- 1 sk users 21 Dec 13 14:53 source.file

As we see in the above screenshot, even though the softlink.file has same contents as source.file,

the inodes number (15746561 vs 15746185) and file permissions (lrwxrwxrwx vs -rw-r–r–

) are different. Hence, it is proved that soft link doesn’t share the same inodes number and

permissions of original file.

Now, remove the original file (i.e source.file) and see what happens.

$ rm source.file

Check output of softlink.file using command:

$ cat softlink.file

https://www.ostechnix.com/wp-content/uploads/2016/12/sk@sk-test_008.png
https://www.ostechnix.com/wp-content/uploads/2016/12/sk@sk-test_006.png

35

Sample output:

cat: softlink.file: No such file or directory

As you see above, there is no such file or directory called softlink.file after we we removed the

original file (i.e source.file). So, now we understand that soft link is just a link that points to the

original file. The softlink is like a shortcut to a file. If you remove the file, the shortcut is useless.

As you already know, if you remove the soft link, the original file will still present.

Creating Hard Link

Create a file called source.file with some contents as shown below.

$ echo "Welcome to OSTechNix" >source.file

Let us verify the contents of the file.

$ cat source.file

Welcome to OSTechNix

source.file has been created now.

Now, let us create the hard link to the source.file as shown below.

$ ln source.file hardlink.file

Check the contents of hardlink.file.

$ cat hardlink.file

Welcome to OSTechNix

You see the hardlink.file displays the same data as source.file.

Let us check the inodes and permissions of softlink.file and source.file.

$ ls -lia

https://www.ostechnix.com/wp-content/uploads/2016/12/sk@sk-test_009.png
https://www.ostechnix.com/wp-content/uploads/2016/12/sk@sk-test_011.png

36

Sample output:

total 16

15745326 drwxr-xr-x 2 sk users 4096 Dec 13 15:22 .

15728642 drwx------ 49 sk users 4096 Dec 13 14:50 ..

15745555 -rw-r--r-- 2 sk users 21 Dec 13 15:20 hardlink.file

15745555 -rw-r--r-- 2 sk users 21 Dec 13 15:20 source.file

Now, we see that both hardlink.file and source.file have the same the inodes number

(15745555)and file permissions (-rw-r–r–). Hence, it is proved that hard link file shares the

same inodes number and permissions of original file.

Note: If we change the permissions on source.file, the same permission will be applied to the

hardlink.file as well.

Now, remove the original file (i.e source.file) and see what happens.

$ rm source.file

Check contents of hardlink.file using command:

$ cat hardlink.file

Sample output:

As you see above, even if I deleted the source file, I can view contents of the hardlink.file.

Hence, it is proved that Hard link shares the same inodes number, the permissions and

data of the original file.

https://www.ostechnix.com/wp-content/uploads/2016/12/sk@sk-test_013.png
https://www.ostechnix.com/wp-content/uploads/2016/12/sk@sk-test_015.png

